Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171453, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453089

RESUMO

Recycling e-waste is seen as a sustainable alternative to compensate for the limited natural rare earth elements (REEs) resources and the difficulty of accessing these resources. Recycling facilitates the recovery of valuable products and minimizes emissions during their transportation. Numerous studies have been reported on e-waste recycling using various techniques, including thermo-, hydro- and biometallurgical approaches. However, each approach still has technical, economic, social, or environmental limitations. This review highlights the potential of recycling e-waste, including outlining the current unutilized potential of REE recycling from different e-waste components. An in-depth analysis of e-waste generation on a global scale and Australian scenario, along with various hazardous impacts on ecosystem and human health, is reported. In addition, a comprehensive summary of various metal recovery processes and their merits and demerits is also presented. Lifecycle analysis for recovering REEs from e-waste indicate a positive environmental impact when compared to REEs produced from virgin sources. In addition, recovering REEs form secondary sources eliminated ca. 1.5 times radioactive waste, as seen in production from primary sources scenario. The review outcome demonstrates the increasing potential of REE recycling to overcome critical challenges, including issues over supply security and localized dependency.

2.
Sci Total Environ ; 913: 169436, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160846

RESUMO

Due to the 'forever' degrading nature of plastic waste, plastic waste management is often complicated. The applications of plastic are ubiquitous and inevitable in many scenarios. Current global waste plastics production is ca. 3.5 MMT per year, and with the current trend, plastic waste production will reach 25,000 MMT by 2040. However, the rapid growth in plastic manufacture and the material's inherent nature resulted in the accumulation of a vast amount of plastic garbage. The current recycling rate is <10 %, while the large volumes of discarded plastic waste cause environmental and ecological problems. Recycling rates for plastic vary widely by region and type of plastic. In some developed countries, the recycling rate for plastics is around 20-30 %, while in many developing nations, it is much lower. These statistics highlight the magnitude of the plastic waste problem and the urgent need for comprehensive strategies to manage plastic waste more effectively and reduce its impact on the environment. This review critically analyses past studies on the essential and efficient techniques for turning plastic trash into treasure. Additionally, an attempt has been made to provide a comprehensive understanding of the plastic upcycling process, the 3Rs policy, and the life-cycle assessment (LCA) of plastic conversion. The review advocates pyrolysis as one of the most promising methods of turning plastic trash into valuable chemicals. In addition, plastic waste management can be severely impacted due to uncontrollable events, such as Covid 19 pandemic. Recycling and chemical upcycling can certainly bring value to the end-of-life plastic. However, the LCA analysis indicated there is still a huge scope for innovation in chemical upcycling area compared to mechanical recycling. The formulation of policies and heightened public participation could play a pivotal role in reducing the environmental repercussions of plastic waste and facilitating a shift towards a more sustainable future.

3.
Sci Total Environ ; 857(Pt 1): 159155, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206897

RESUMO

Over the years, the transformation of biomass into a plethora of renewable value-added products has been identified as a promising strategy to fulfil high energy demands, lower greenhouse gas emissions, and exploit under-utilized resources. Techno-economic analysis (TEA) and life-cycle assessment (LCA) are essential to scale up this process while lowering the conversion cost. In this study, trade-offs are made between economic, environmental, and technical indicators produced from these methodologies to better evaluate the commercialization potential of biomass pyrolysis. This research emphasizes the necessity of combining LCA and TEA variables to assess the performance of the early-stage technology and associated constraints. The important findings based on the LCA analysis imply that most of the studies reported in literature focussed on the global warming potentials (GWP) under environmental category by considering greenhouse gases (GHGs) as evaluation parameter, neglecting many other important environmental indices. In addition, the upstream and downstream processes play an important role in understanding the life cycle impacts of a biomass based biorefinery. Under upstream conditions, the use of a specific type of feedstock may influence the LCA conclusions and technical priority. Under downstream conditions, the product utilization as fuels in different energy backgrounds is crucial to the overall impact potentials of the pyrolysis systems. In view of the TEA analysis, investigations towards maximizing the yield of valuable co-products would play an important role in the commercialization of pyrolysis process. However, comprehensive research to compare the conventional, advanced, and emerging approaches of biomass pyrolysis from the economic perspective is currently not available in the literature.


Assuntos
Biocombustíveis , Pirólise , Biomassa
4.
Bioresour Technol ; 364: 128087, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36216287

RESUMO

Biomass pyrolysis has recently gained increasing attention as a thermochemical conversion process for obtaining value-added products, thanks to the development of cutting-edge, innovative and cost-effective pyrolysis processes. Over time, new and novel pyrolysis techniques have emerged, and these processes can be tuned to maximize the production of high-quality hydrogen. This review examines recent advancements in biomass pyrolysis by classifying them into conventional, advanced and emerging approaches. A comprehensive overview on the recent advancements in biomass pyrolysis, highlighting the current status for industrial applications is presented. Further, the impact of each technique under different approaches on conversion of biomass for hydrogen production is evaluated. Techniques, such as inline catalytic pyrolysis, microwave pyrolysis, etc., can be employed for the sustainable production of hydrogen. Finally, the techno-economic analysis is presented to understand the viability of pyrolysis at large scale. The outlook highlights discernments into future directions, aimed to overcome the current shortcomings.

5.
Sci Total Environ ; 823: 153670, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131250

RESUMO

The world has entered into the "fourth-generation" of refrigerants, and it is an undeniable fact that we will continue to encounter several issues in identifying a suitable refrigerant that suits the purpose and poses no harm to the environment. The ever-changing regulations on the use of refrigerants have often posed great challenges to the refrigeration industry and there is a pressing need to develop new refrigerants and develop better equipment to use them. Theoretically, an ideal refrigerant should possess characteristics such as low-global warming potential (GWP), non-toxic, non-flammable, and zero-ozone depletion potential (ODP). In addition, the refrigerants are also expected to have excellent thermodynamic and thermophysical properties. Many new synthetic refrigerants have been reported as alternative refrigerants and have very low atmospheric life as well as low GWP and zero-ODP. However, it is irrefutable that most of the studies that reported the so-called new refrigerants are actually not new. From the invention of R-12 (Dichlorodifluoromethane) in 1930s to the invention of R-1234yf in 2000s, these substances are available for decades even before being recognized as refrigerants. This review attempts to provide chronicles on different aspects of refrigerants such as their progress since their invention in the early 1800s, classification and properties. In addition, concepts such as issues associated with the long-term use of refrigerants, barriers for the inclusion of low-GWP refrigerants, various protocols and accords that have occurred since the inception of refrigerants are also critically discussed.


Assuntos
Aquecimento Global , Perda de Ozônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA